NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at

350MHz Fixed Gain Amplifiers with Enable

The 5962-0625501QXC is a fully DLA SMD compliant part and the SMD data sheet is available on the DLA website (http://www.landandmaritime.dla.mil/Programs/MilSpec/Doc Search.aspx). The 5962-0625501QXC is electrically equivalent to the EL5106. Reference equivalent "EL" data sheet for additional information. The 5962-0625501QXC is a fixed gain amplifier with a bandwidth of 350 MHz . This amplifier is ideal for today's high speed video and monitor applications. It features internal gain setting resistors and can be configured in a gain of $+1,-1$ or +2 .

With a supply current of just 1.5 mA and the ability to run from a single supply voltage from 5 V to 12 V , these amplifiers are also ideal for handheld, portable or battery powered equipment.

The 5962-0625501QXC has an enable and disable function to reduce the supply current to $25 \mu \mathrm{~A}$ typical. Allowing the $\overline{\mathrm{CE}}$ pin to float or applying a low logic level will enable the amplifier.

Ordering Information

PART NUMBER (Note)	PART MARKING	PACKAGE	PKG. DWG. \#
5962-0625501QXC	06255 01QXC	10 Ld Flat Pack	K10.A

NOTE: These Intersil Pb-free Hermetic packaged products employ 100% Au plate -e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations.

Features

- Gain selectable (+1, $-1,+2$)
- $350 \mathrm{MHz}-3 \mathrm{~dB}$ BW $\left(\mathrm{A}_{\mathrm{V}}=2\right)$
- 1.5 mA supply current per amplifier
- Fast enable/disable
- Single and dual supply operation, from 5 V to 12 V

Applications

- Battery powered equipment
- Handheld, portable devices
- Video amplifiers
- Cable drivers
- RGB amplifiers

Pinout

5962-0625501QXC
(10 LD FLAT PACK) TOP VIEW


```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\)
Supply Voltage between \(\mathrm{V}_{\mathrm{S}^{+}}\)and \(\mathrm{V}_{\mathrm{S}^{-}}\). . . . . . . . . . . . . . . . . . . 13.2 V
Pin Voltages . . . . . . . . . . . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{S}^{+}}+0.5 \mathrm{~V}\)
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 20mA
```


Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Flat Pack Package (Notes 1, 2)	165	60
Storage Temperature	-65	C to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature		C to $+125^{\circ} \mathrm{C}$
Operating Junction Temperature .		$+150^{\circ} \mathrm{C}$
Power Dissipation		21.8 mW

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 2. For θ_{JC}, the "case temp" location is the center of the exposed metal pad on the package underside.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
AC PERFORMANCE						
BW	-3dB Bandwidth	$A_{V}=+1$		250		MHz
		$A_{V}=-1$		380		MHz
		$A_{V}=+2$		350		MHz
BW1	0.1 dB Bandwidth			20		MHz
SR	Slew Rate	$\mathrm{V}_{\mathrm{O}}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$		4500		$\mathrm{V} / \mathrm{\mu s}$
t_{S}	0.1\% Settling Time	$\mathrm{V}_{\text {OUT }}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=2$		16		ns
e_{N}	Input Voltage Noise			2.8		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{i}^{+}+$	IN+ Input Current Noise			6		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
dG	Differential Gain Error (Note 3)	$A_{V}=+2$		0.02		\%
dP	Differential Phase Error (Note 3)	$A_{V}=+2$		0.04		-
DC PERFORMANCE						
$\mathrm{R}_{\mathrm{F}}, \mathrm{R}_{\mathrm{G}}$	Internal R_{F} and R_{G}			325		Ω
INPUT CHARACTERISTICS						
$\mathrm{R}_{\text {IN }}$	Input Resistance	at $\mathrm{I}^{+}{ }^{+}$		2		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1		pF
ENABLE						
ten	Enable Time			280		ns
tois	Disable Time			400		ns

NOTE:
3. Standard NTSC test, AC signal amplitude $=286 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P},} \mathrm{f}=3.58 \mathrm{MHz}$

Pin Descriptions

5962-0625501QXCIS (10 LD FLAT PACK)	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	FUNCTION	EQUIVALENT CIRCUIT
1, 5, 9, 10	NC	Not connected	
2	IN-	Inverting input	
3	IN+	Non-inverting input	(Reference Circuit 1)
4	VS-	Negative supply	
6	OUT	Output	
7	VS+	Positive supply	
8	$\overline{\mathrm{CE}}$	Chip enable	

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9001 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Ceramic Metal Seal Flatpack Packages (Flatpack)

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one.
2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply.
3. This dimension allows for off-center lid, meniscus, and glass overrun.
4. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
5. N is the maximum number of terminal positions.
6. Measure dimension S1 at all four corners.
7. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
8. Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch $(0.038 \mathrm{~mm})$ maximum when solder dip lead finish is applied.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH.

K10.A MIL-STD-1835 CDFP3-F10 (F-4A, CONFIGURATION B) 10 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE

SYMBOL	INCHES		MILLIMETERS						
A	0.045	0.115	1.14	2.92	-				
b	0.015	0.022	0.38	0.56	-				
b1	0.015	0.019	0.38	0.48	-				
c	0.004	0.009	0.10	0.23	-				
c1	0.004	0.006	0.10	0.15	-				
D	-	0.290	-	7.37	3				
E	0.240	0.260	6.10	6.60	-				
E1	-	0.280	-	7.11	3				
E2	0.125	-	3.18	-	-				
E3	0.030	-	0.76	-	7				
e	0.050	BSC	1.27		BSC				
k	0.008	0.015	0.20	0.38	2				
L	0.250	0.370	6.35	9.40	-				
Q	0.026	0.045	0.66	1.14	8				
S1	0.005	-	0.13	-	6				
M	-	0.0015	-	0.04	-				
N	10							10	-

Rev. 0 3/07

